Tools for assessing ecological potential of sagebrush ecosystems in Nevada

Devon Snyder Presented to the Sagebrush Ecosystem Council March 13, 2018

Overview

- Rangeland ecology climate, soils, veg
- How can we manage at reasonable scales for realistic goals?
 - Land resource hierarchy
 - Example of MLRA differences in NV
 - Example of DRG differences in NV
 - State and transition models
 - Overview
 - Examples of STMs in use

Use of existing AIM data in conjunction with MLRA/DRGs to make inferences about plant communities

Climate

- Timing and amount of precipitation
 - Monsoons, snow
- Temperature
 - Min/max
 - Seasonal averages
 - Daily fluctuations

Soil

- Parent material
 - Limestone, basalt, granite, lake sediment...
 - Landscape position
 - Concave/convex (Run-on, run-off)
 - Aspect: north/south Slope

Properties important to plants

Rooting depth Available soil moisture Nutrients pH Soil texture Freezing temps, heat Length of growing season Etc.

What is "process-based" thinking?

 Understanding that what we see is created by the functional capacity of ecological processes

- Energy
- Nutrients
- Water

Land Resource Region (LRR)

Regions with similar climate, land use

Geographic areas with similar soils

Similar landscape patterns

Sand Con

Groups of Ecological Sites – share landscapes

Intermingled ecological sites or a single site

One individual representative of the site

An observation of plant-soil relationships

Minimum temperature

Minimum temperature

Calcium carbonate

Calcium carbonate

Monsoonality: Summer rain

Basic Model Precipitation, Temperature, and Vegetation (MLRA 28b)

Cryic = 8,200-1300 ft, 18-28" mean annual ppt Xeric and Xeric-Aridic, fir, spruce, bristlecone

> Frigid = 6,000-8,200 ft, 12-20" Xeric-Aridic and Xeric, black sage, low sage, mountain sage, pinyon

> > Mesic = 4,000-6,500 ft, 5-12" Aridic and Aridic-Xeric , shadscale, black sagebrush

Western Range and Irrigated Region Xeric = moisture during winter, summers are dry Aridic = very little moisture during any season

Basic Model Precipitation, Temperature, and Vegetation (MLRA 25)

Cryic = 6,500-9,500+ ft, 16-20+" mean annual ppt Xeric bordering aridic or udic aspen, snowberry, mtn brome

> Frigid = 5,500-9,500 ft, 12-18" mean annual precip xeric or aridic bordering xeric low sagebrush, mountain big sagebrush, bitterbrush, Idaho fescue

> > Mesic = 4,200-8500 ft, 8-14" MAP aridic bordering xeric Wyoming big sagebrush, low sagebrush, bluebunch wheatgrass, Thurber's needlegrass

Owyhee High Plateau

Ecological sites Sites that have similar climate and soils that produce

similar kinds and amounts of vegetation

Stony Mahogany Savanna

Claypan 12-16

Aspen Woodland

Loamy 12-16

Ecological sites

• Why divide landscapes into basic units?

Recognize and communicate important and repeatable differences in

- Vegetation
- Soils
- Ecological processes
- Disturbance response

 Ecological sites assure that our goals and expectations for land should not be the same everywhere

Ecological Site Groupings for Mgmt

 Disturbance Response Groups
 Consolidate similar ecological sites <u>in a way that is</u> <u>important for management</u>

• Example, MLRA 25:

Group 2: low sagebrush, 12-14" precip 4 sites	Claypan 12-16	025XY017NV
	Claypan 16+	025XY032NV
	Gravelly Claypan 12-16	025XY023NV
	Clayey 12-14	025XY054NV
Group 6: mountain big sagebrush, 12-16" precip 7 sites	Loamy Slope 12-16	025XY012NV
	Loamy 12-14	025XY027NV
	Gravelly Loam 12-16	025XY007NV
	South Slope 14-18	025XY016NV
	Shallow Loam 14-16	025XY042NV
	Loamy 14-16	025XY056NV
	Fractured Stony Loam 14+	025XY046NV

Example of Grouping

Granitic Slope 10-12" - May '16 Shallow Loam 10-12" – April '16

MLRA 26, group 9

- Range of big sagebrush (Wyoming, basin, and mountain) and Antelope bitterbrush
- Thurber's needlegrass and desert needlegrass
- Precipitation 10-12" Soils: Mollic epipedon Model has annual state and tree state

Crooked River National Grasslands

Crooked River National Grasslands DRG Map

State and Transition models (STM)

• NRCS has accepted the STM as the format for describing ecological dynamics for the nation's rangelands Captures knowledge Historical events, use Recent management Observations after disturbances Scientific literature **Resilience and resistance** • Stringham lab since 2007 (OR, NV. CA)

STM development

- By MLRA
- Built by an interdisciplinary teamDRGs to expedite model-building
- Office meetings
- Field visits:
 Full soil description
 Species lists
 Grass density
 Annual production

Nevada - Major Land Resource Areas

• MLRA 28A & 28B 310 Field notes / 190 ES* • MLRA 26 154 Field notes / 104 ES 91 NV sites, 13 CA sites • MLRA 25 115 Field notes / 69 ES • MLRA 24 79 Field notes / 54 ES • MLRA 23 174 Field notes / 84 ES *ES = ecological site

Nevada MLRAs

0 50 100 200 Miles

State and Transition models

Tool for thinking about system ecology by MLRA
Describe ecological dynamics
Restoration pathways
Living documents
Designed for land managers

STMs in Use

- Ely BLM fuels treatments
 - Wyoming big sagebrush / indian ricegrass group

Before Treatment 2009

After Treatment 2014

Using AIM data with STMs/DRGs

AIM sampling already stratified by ecological sites or DRGs
Data analyzed from 2011 to 2015

Sagebrush cover by species

sage

Cover

- Wyoming big sagebrush: 34.7%
- Deeprooted perennial grass: 6%
- Sandberg bluegrass: 18%
- Cheatgrass present (<1%)

Group 4 Wyoming big sagebrush Shrub state

Cover

- Wyoming big sagebrush: 13.3%
- Deeprooted perennial grass: 7.99%
 - (needle and thread, squirreltail)
- Sandberg bluegrass: 6.6%
- Cheatgrass present (2.6%)

Group 4 Wyoming big sagebrush Current Potential 2.1

Cover

Devils Gate (EKDO) 02

- Wyoming big sagebrush: 3.3%
- Deeprooted perennial grass: 16%
 - (mostly squirreltail)
- Sandberg bluegrass: 13.3%
- Cheatgrass: 12.7%

Group 4 Wyoming big sagebrush Current potential 2.2 (post-fire)

16%: highest cover of grass in the Wyoming big sagebrush group in MLRA 25 (50 plots)

Grass functional

groups vs. Wyoming big sagebrush cover

50 plots in MLRA 25
Deep rooted perennial grass never higher than 10%
Slight relationship to shrub cover

Cover

- Low sage: 39.3%
- Deeprooted perennial grass: 0.6%
- Sandberg bluegrass: 7.3%
- 9.3% mat-forming forbs
- 13.5 % dead shrubs

Group 1 Low sagebrush Shrub State

North Four Mile 02

Cover

- Low sage: 22.7%
- Deeprooted perennial grass: 10.6%
- Sandberg bluegrass: 16%
- Bur buttercup + 2% cover of mule ear

Group 2 Low sagebrush Current potential 2.3

Cover

- Low sage: 26%
- Deeprooted perennial grass: 22%
 - (16% Idaho fescue, 4% bluebunch)
- Sandberg bluegrass: 5%
- 0.6% mat-forming forbs

North Four Mile 03

Cover

- Mountain big sagebrush: 19.3%
- Deeprooted perennial grass: 11.3%
- Sandberg bluegrass: 40%
- Cheatgrass present (1.3%)
- 4.1% dead branches

Cover

- Mountain big sagebrush: 25.5%
- Deeprooted perennial grass: 47.3%
 - (43% Idaho fescue)
- Cheatgrass present (3.3%)

Group 6 Mountain big sagebrush Current potential 2.1

Highest cover of grass of all plots analyzed in MLRA 25 (117 plots)

Takeaway

- Shrub cover is highest in the shrub state
 Reduced resiliency
 - Grass cover is highest in Reference or Current Potential, post-disturbance
- Need more biome-level surveys like Davies et al.
 (2006)
 - More specific than AIM data What does sagebrush cover, by DRG, look like in MLRA 25?

Current Evolutions

- ESDs historically focused on production data
- Habitat issues often cover focused
- Scale = landscape
- AIM data & other cover data sources
 Relate shrub cover to understory characteristics
- ModelingImprove mapping

http://www.cabnr.unr.edu/resources/MLRA.aspx

Recommendations

 Use existing soil maps Know the quality of your soil survey • Ecological site descriptions • Any available point data: AIM, LMF, NDOW data To verify ecological site remotely, if possible • Use state and transition models to guide management decisions, after verifying Site and State on the ground • Do not assume measurements are useful across regional boundaries Sagebrush cover in the Bodie Hills \neq Sonoma Range \neq Desatoyas

How?

- Training
- Wider availability of ecological site descriptions
 Stratify sagegrouse habitat requirements by MLRA
 How do STM States work for your management
 - objectives?

Current state and transition models for Nevada and Oregon B10: http://naes.unr.edu/resources/mlra.aspx